16 Mistakes to Avoid When Making Your First Science Video

karen_bookshelfPicture this scenario: A scientist is nearing the end of a research project funded by NSF and is preparing the required summary report written for the public. She decides to create a short video to submit along with her written report. She’s never made a video before—only shot occasional footage with her iPhone. Undaunted, she buys an expensive camcorder and after a bit of practice in her backyard, dives into shooting. She films herself explaining the project in detail from behind her office desk. She goes through all the methods, results, and statistics, making sure to cover all the uncertainties and limitations of the research. She doesn’t bother to edit the footage, not really knowing how to do this. In any case, the clips she shot in her backyard garden look nice and add a bit of scenery to the video. The final video is 29 minutes long. Proudly, she shows it to her lab group, most of whom worked on the research project. At the end of the viewing, there is stunned silence. Then, one graduate student tentatively raises his hand and asks, “You’re not going to put this on YouTube, are you?”

Uh oh.

Novices typically make the same mistakes when they first attempt to create a video. I know because I’ve made quite a few of them myself. I see the same glaring blunders made over and over again in what are clearly first-time videos made by a scientist or science educator. However, many of these errors are easily avoided. Some simply require awareness to side-step them, while others take a bit of practice and/or the right equipment.

I came up with a list of 16 common mistakes (and how to avoid them) based on my own experience. I either made the mistake myself at some point or would have had I not been forewarned about it. I’m sharing them with you in the hopes that they will help you avoid some of the most common errors:

1. Ignore your audience. The number one mistake that you can make is to fail to identify your target audience or fail to keep them in mind when designing your video. I find that scientists too often explain their work as they would to their colleagues, even if their audience is composed of non-specialists with little or no background in the field. It never occurs to them to put themselves into their audience’s shoes.

Solution: During all phases of video production, ask yourself the following questions. Will it make sense to my viewers? Will they find it memorable, interesting, informative, and/or enjoyable? Find more information on how to keep your audience engaged here: Keep Your Audience in Mind and Are Your Science Videos Understandable by a Diverse Audience?.

2. Have no plan. Novices rush out with their cameras and just start shooting. The result? A long-winded, rambling monologue and/or poorly composed footage, which often has no bearing on the topic of the video.

Solution: Prepare a script and storyboard your shots beforehand. Write out what you want to say and also describe or sketch out the sequence of shots (storyboard) you plan to use. Don’t memorize the script, however—just use it to organize your main points and to ensure a smooth delivery. Follow your storyboard to set up your shots and also to guide you in editing.

3. Don’t tell a story. A common mistake that scientists make in a video is to string together a series of facts designed to “educate” the viewer. These facts are presented in a logical and unemotional manner—which is how we are trained to convey science information. Unfortunately, viewers, especially the general public or students, may not react well to this approach. In addition, they may not remember material presented this way.

Solution: Frame your science message in the form of a story. People love stories and will stick around to see how everything turns out. They also tend to remember stories better than bare facts. Explaining science in the form of a story also helps you, the science communicator, make a connection with the audience. A good story asks and answers a dramatic question: What motivates a scientist to study deadly viruses? How does a volcanologist collect (and carry) samples of molten lava? Why should I care about climate change? By using a story, the videographer can present science information accurately and concisely but in a way that engages the viewer.

For more information on the use of dramatic questions and storytelling in science videos, read The Dramatic Question and I’m Not Interesting, But My Research Is.

4. Use bad camera moves. Inexperienced videographers often shoot with hand-held cameras, which produces shaky or blurry footage (and no, it’s not the same as the jerky footage sometimes used by professional filmmakers). Another common mistake is sweeping the camera around erratically (“firehosing”). These problems happen when the videographer has no idea what they want to shoot (in other words, they have not planned anything and are just filming everything in the hopes of getting something useful).

Solution: Carefully plan and set up each shot and use a tripod to steady the camera.

5. Overuse zooming/panning. The controls on many modern cameras encourage novices to overuse the zoom feature, which can be annoying to viewers and also adds unnecessarily to the video length. Too much panning (swinging the camera from side to side across a scene) is also a sign of inexperience.

Solution: Zoom with your feet. Instead of using the camera to zoom in for a close-up, stop and walk closer to your subject and resume shooting. The time spent during a zoom is wasted time and does not add anything of value to your video. Use zoom and pan sparingly and only when you have a specific reason for it.

6. Backlight your subject. Another common error made during filming is to position the subject in front of a light source such as a window, which causes backlighting. The camera automatically selects the brightest light as reference and adjusts everything else accordingly. The result is to put your subject in deep shadow. Backlighting can occur outdoors as well when the sun is positioned behind the subject or is overhead, casting shadows onto the subject’s face.

Solution: Ensure that the light source is behind the camera; if necessary, use extra lamps or reflectors to light your subject. This post and video explain more about backlighting: How to Deal with Lighting Issues.

7. Fail to compose your shots properly. Many novice videographers/photographers put their subject in the center of the frame, which is less interesting to the eye.

Solution: Use the “rule of thirds” to compose shots. Most cameras have an option to show a grid in the viewfinder that divides the frame into thirds from top to bottom and left to right. Use this guide to frame your shots. Read more about this composition tip in this post: The Rule of Thirds.

8. Shoot too wide. Novice videographers (and photographers) often shoot too wide, putting their subject far from the camera lens. The result is often a poorly-composed shot in which details of the scene, the subject, or the action are difficult to see.

Solution: Wide shots are fine if you are trying to show something in perspective—otherwise position the camera close enough to your subject to capture the action and/or details, such as facial expressions. If they are gesturing or demonstrating something, then periodically use a medium shot or possibly a close-up of their hands (and whatever they are holding).

9. Tell but don’t show. Those new to video often rely on verbal descriptions and fail to show what is being described. This approach reveals a lack of imagination and is boring to the viewer.

Solution: Let visuals tell your story. Use text and verbal descriptions to augment the visual depictions—not the other way around. You are making a video, after all. For more information, read Show and Tell and What Is B-roll and Why Should I Care About It?

10. Drag it out.  Some videos seem to drag because the scenery never changes, or the story does not move forward at a good pace.

Solution: Use a variety of footage (or still images) shot in different locations or from different perspectives (close-up, medium shot, wide shot). By changing scenery or perspectives, you add visual interest and move the story forward. For more information, read Keep it Moving.

11. Feature “talking heads”. The novice videographer films long sequences of people speaking to the camera—an approach that is guaranteed to bore viewers. This effect is enhanced when the talking head is a scientist speaking in a robotic manner.

Solution: Use cutaways to other footage, images, animations, or graphics to illustrate what the speaker is describing. By giving the eye something new to look at while the speaker is explaining, you add visual interest and avoid boredom.

12. Don’t worry about the audio. Novice videographers fail to use proper microphones and often don’t pay attention to ambient noises (people talking nearby, dishes clattering, machinery droning, traffic rumbling, wind blowing) during filming.

Solution: Use a lavalier-mic (lapel microphone) to ensure a speaker’s voice is clearly heard. Also use a good quality microphone for voice overs (not the built-in computer microphone). When shooting, review often and listen to the sound with headphones or earbuds. For more information, see How to Improve the Audio of Your Videos Without Breaking the Bank.

13. Have speakers introduce themselves. Having a subject introduce themselves on camera sounds awkward and also wastes time: “Hi, I’m Dr. Hotshot, and I work on a very important subject.”

Solution: Identify people with a simple text caption that appears briefly while the speaker is talking about their topic. The person is clearly identified without adding to the length of the video.

14. Go crazy with special effects. Movie-editing applications often include a library of special video and audio effects. Novices get carried away and use dramatic transitions between clips or glowing text that zooms in and out of the frame. Overuse of fancy effects in an attempt to spruce up otherwise boring footage will fool no one—and will likely annoy the viewer.

Solution: Stick to basic transitions (cut, dissolve) and simple (and consistent) text styles. Use special effects sparingly and only if you have a specific reason to do so.

15. Make it longer than necessary. Scientists making their first video will try to cram as much information as possible into it. They also feel the need to explain every detail and uncertainty (in the interest of accuracy). By the time they finish all that hemming and hawing, the viewer has clicked away to another video.

Solution: Strip your video down to a core message and include only those elements necessary to get that message across. If you can deliver your message in three minutes, then don’t go any longer by trying to cram in more “facts”. For more on the topic, read Strive for Brevity and Can You Describe a Scientific Method in a One-Minute Video?

16. Use copyrighted material without permission. Novices often are unclear about what can and cannot be used in a video. Instead of creating original material, they download images, video, and music from the Internet to create their videos. Unfortunately, they may be guilty of copyright infringement.

Solution: Assume anything on the Internet (or fixed in any other medium) is copyright protected until evidence to the contrary is found. Just because you can download it, does not mean you are justified in using it. The best solution is to use media that you’ve created or media in the public domain. Otherwise, you need to obtain written permission and/or pay a fee to the copyright holder. For more information, see Sources of Public Domain Images.

Well, that’s my list of common mistakes to avoid when making your first science video. This is not an exhaustive list—just the ones that I found to be most problematic for me, a scientist. Some of these are no-brainers, but others you may find difficult to avoid even if you know better.

Want to learn more? I go into greater detail about these and other pitfalls to avoid in my book, The Scientist Videographer. Check it out.

Science Video Tip: How to Deal with Lighting Issues

Lighting is probably one of the biggest challenges for scientists making videos, especially while doing fieldwork.

Backlighting is a common mistake in which the subject is positioned in front of a window or other light source, putting their image in shadow. By moving the camera so that the light is behind the camera or to the side will solve this issue.  In the video below, I provide an example in which I wanted to shoot footage in a field station laboratory but the light from the windows was interfering with the shot.  Because of the configuration of the laboratory, it was not possible to shoot the lab bench in a way to put the light behind the camera.  I resolved the problem by blocking the light from the windows with some seat cushions and opening a door to introduce light from the side.

Outdoors, we have little control over light intensity and direction.  It’s difficult to avoid shadows during midday when the sun is overhead.   People often wear caps in the field, and these throw even more shadows on the person’s face.  One solution is to use a reflector.  You can buy one specifically for filming or you can use a folding car shade or even make your own with aluminum foil.  Then, you can use the reflector to light up your subject’s face with the sun overhead.  The limitation is that your subject must stay in one position, and you must also compose the shot so that the reflector is not visible.

Another solution to outdoor lighting and shadows is to shoot on an overcast day or when the sun is low on the horizon.  For me, an overcast day is the ideal shooting situation, which produces sharp images with little or no shadows.  Filming in the early morning or late afternoon is also good and can result in some beautiful, soft lighting and colors.  The latter may not always be possible, so the scientist videographer must be prepared to shoot under less than ideal lighting conditions.