Front

Welcome

This website is designed to encourage and inform students, teachers, scientists, and other science professionals who are interested in using video to convey information about themselves, their work, or a topic of interest. Here and on my YouTube channel you will find video tutorials, tips, reviews, and other information that will help you plan, shoot, edit, and publish effective and professional-looking videos.

Videography skills will become increasingly important for the scientist of the future to keep pace with the rapid changes in communications technology and electronic publishing. As demand for more accessible and engaging science information increases and as competition for science jobs, research funding, and space in journals becomes more intense, those scientists with multimedia skills such as videography will be at a distinct advantage. 21st century consumers of scientific information, both technical and non-technical, will expect media-rich content, and science educators and researchers must be prepared to provide it.

Learn How to Create a Video

screenshot_iphoneWatch tutorials to learn, step-by-step, how to design and make a video to demonstrate a new method, produce an online lesson, record a screen presentation, and create other communication products. Tap the image to the left to see a tutorial showing how to shoot and edit a video with a smartphone. For more tutorials, see this list by category (or select Tutorials in the Navigation bar).

Now Available: The Scientist Videographer eBookThe Scientist Videographer Book

This ebook is a detailed how-to for scientists, science educators, and students who wish to make their own videos. This electronic guidebook was created with a new authoring platform to combine text, video, and other interactive content to facilitate learning. This ebook shows how to plan, shoot, edit, and publish an effective and professional-looking science video to demonstrate a new method, record an online lesson or lecture, create supplemental online material for a journal article, produce a virtual tour of a laboratory or experimental facility, to raise online visibility—and many other uses.

Read more about the book on this page (or select eBook in the top navigation bar).

Who Is The Scientist Videographer?

cameraoperator_cartoon_klmckeeI am a research scientist who has discovered the value of having videography skills in my communication toolbox—which in the future will be just as important as writing and oral presentation skills are now for a successful science career. I’ve found that video has not only expanded my abilities to explain and share my science with others, it has benefited my career in ways I never dreamed possible. To learn more about what led me to acquire videography skills and why I think it will be a critical communication skill for the scientist of the 21st century, check out my About page. See the links in Other Science Contributions for more information about me and my research.

My Science Videos

Mississippi River Flood of 2011

Public domain image (U.S. Geological Survey)

In addition to science videography tutorials, I have produced and published several peer-reviewed science videos as well as a number of other videos on various science and science-career topics. I provide links to those videos on My Science Videos page to show how someone with no formal training in videography, media, or science communication can produce effective videos to convey a science message. I made my first science video in 2008 and have since published about 80 videos (including tutorials).

If I can do it, so can you.

The Scientist Videographer Blog

For more information, tips, video reviews and general musings about science communication, go to my blog. Here you will find additional material and links to video tutorials and other instructional information. See recent posts below or select Blog in the Navigation bar.

mangroves_K.L. McKee

Recent Posts

How to Get and Keep Your Video Viewer’s Attention

Video is a fantastic medium for the communication of science. However, it’s not an easy medium to master, especially for science professionals who are not typically trained in filmmaking techniques. I’m not talking about the technological challenges of using audiovisual equipment and software, though. I’m talking about how to design a video that others want to watch.

When I first began making videos about my research, I approached the process like a scientist rather than a filmmaker. My natural inclination was to communicate the way I had been trained as a science professional. We are taught to communicate by presenting a logical series of facts and findings, supported by data—lots of data. We are also taught, in the interest of accuracy and precision, to include excruciating detail—all the uncertainties and limitations of our findings. And, we must look and sound serious when delivering a science message—otherwise, our colleagues won’t find us credible. This approach may work just fine with our peers but does not necessarily work for other audiences. In fact, it often fails miserably with the general public.

In the beginning, it never occurred to me that I needed to look at things from a filmmaker’s viewpoint rather than from a scientist’s viewpoint (this insight continues to be the one that most surprises and confounds the science professionals who attend my workshops and webinars). But over time, I gradually realized that using video as a communication tool required me to meet the video viewer’s expectations, which is different from someone reading an article or listening to a conference presentation. This is true even if the viewer happens to be a scientist with specialized knowledge of the topic. We all interact with videos in the same way. In addition to gaining information, we expect that information will be delivered in a certain way—one that doesn’t bore us to tears. Too often, though, that information is presented like a bad-tasting medicine (take this, it’s good for you). Not surprisingly, few people want to watch.

So, what does work?

For the answer, one need only look at popular science video channels on YouTube: Veritasium, Smarter Every Day, MinutePhysics, and ASAPscience. In fact, let’s look at an example video from Veritasium by Derek Muller who creates videos about science (often physics) and then I’ll talk a bit about why it’s so effective.

OK. This is one of the more popular videos on the Veritasium channel: 8,967,145 views since its posting February 24, 2014. That works out to an average of about 10,400 views per day. Many of his other videos have similarly received millions of views; one has almost 33 million views. The popularity of the overall style of Veritasium’s videos is further evidenced by the number of subscribers to the channel: more than 3.5 million people. So I think it’s safe to conclude that these videos are very popular and that the channel has succeeded in reaching a lot of people.

What specific features set Veritasium’s videos apart—features that you might employ to improve your science videos? Here is my analysis:

  1. Lead with Awesome. A lot of science videos, especially those created by scientists, start out with a long, boring exposition. In contrast, most of the videos on Veritasium start with a bang. Little time is spent at the beginning explaining or introducing the scientific concept to be featured in the video (that information is provided later). The videos on the Veritasium channel typically open with a “hook” such as a question, an intriguing observation, or an amazing demonstration. In other words, the video gets right to the point in the first few seconds. The video, “2, 4, 8” is a good example. In the first ten seconds, the video asks if you can figure out the rule behind the number series. Also, notice that no time is wasted on awkward introductions of the people in the video, including the host, Derek Muller.
  2. Challenge Misconceptions Carefully. Many of Veritasium’s videos try to correct common misconceptions about scientific concepts, but in an indirect, non-threatening way. A direct approach might have a scientist on camera list common misconceptions and explain why they are wrong. This tactic is often not effective, partly because the viewer may feel that they are being “talked down to” or lectured  by someone with superior knowledge—and they become more resistant to hearing the truth. Instead, Muller interviews average citizens on the street to get them to reveal common preconceived notions or misunderstandings about a particular subject. The expert then leads everyone, including the viewer, to the correct answer. In “2, 4, 8”, we see a series of people struggling to figure out what “rule” Muller has in mind. The viewer can’t help but play along. The outcome is that instead of being a passive receptacle for information, the viewer becomes an active participant in the exercise that eventually reveals the answer to the puzzle. The expert (Muller) then explains (briefly) the significance of the exercise.
  3. Don’t Over Polish. I think people are turned off by “shock and awe” science videos that contain over-the-top animations and are produced at great cost by film studios. One reason may be that such videos seem to be desperately trying to get the viewer’s attention with special effects rather than relying on the awesomeness of the science. The Veritasium videos are technically sound, but not “slick”, and one gets the idea that these are low-budget productions. In the “2, 4, 8” example, the video was shot on the street by Muller’s mother who operated the camera. Such unpolished videos appeal to many viewers and may even enhance their admiration of them.
  4. Be as Brief as Possible. Most of the videos on the Veritasium channel are brief—just a few minutes in length—enough time to get across the basic concept without trying the viewer’s patience. The “2, 4, 8” video was just under five minutes. But there is no perfect length. A video should be as long as necessary to get across the message. The scientist videographer is often tempted to cram in more details, but too many details can obscure the message. The “2, 4, 8” video could have included much more information about the scientific method, but this would have been overkill. We just don’t need a long lecture about confirmation bias or Karl Popper to “get the no”.
  5. Keep the Viewer’s Interest. Veritasium videos, including “2, 4, 8”, are designed so that the viewer gets invested in watching the entire thing. The longer you watch, the more interesting things you get to see and hear about. As a viewer, you are interested not only in the answer to the riddle but whether you can figure out the “rule” before any of the people Muller is interviewing. If you figure out the rule early in the video, you continue watching to see if you are correct and also how long it takes the other people. If you don’t figure out the rule, you continue watching to see what the answer is. Either way, you’re hooked. Check out the comments below the “2, 4, 8” video. Many commenters talked about whether and when they figured out the answer.

Oh, I almost forgot the most important aspect of these videos: they are fun to watch! Here’s one more from Veritasium to illustrate the point:

  1. Filming with a Smartphone: 20 Basic Camera Shots Leave a reply
  2. Drone Footage: Think Cinematic Leave a reply
  3. How Long Does It Take to Make a Video? Leave a reply
  4. Muddy Mangrove Movie-Fest Leave a reply