How Making Videos Can Help You Write Better Science Papers: Focus on Your Audience

nasa_crowd_dominichart_cropped_filtered

Credit: Dominic Hart, NASA

In this series of posts, I’m talking about the feedback effect video-making can have on other communications skills such as scientific writing and speaking. When I decided to add video to my communication toolbox, I had no inkling that learning to use this medium would show me how to improve my scientific papers and conference presentations.

In the first post of this series, I described the first lesson I learned, which has had a huge effect on my overall communication skills: Distill Your Message.

In this post, I discuss how I learned to put myself into my audience’s shoes, which dramatically changed my approach to communication, both technical and non-technical.

What you want to present is not necessarily what your audience needs.

Poor communicators tend to ignore the needs of their audience. When speaking or writing, they assume that their audience has the same level of understanding as they do. If the audience gets lost, too bad. You’ve all read papers or heard presentations that were a struggle to understand. You may have even decided that it was your fault—that your lack of comprehension was due to a lack of background in whatever topic was being presented. Actually, the fault lies entirely with the author or presenter.

Scientists are not really taught to consider the audience’s viewpoint. At least, I wasn’t. I never really thought much about whether other people understood me until I began making videos. Because I was targeting a lay audience with my early videos, I vaguely understood that I had to use jargon-free, simpler language to be understandable. Only later did I realize that this was not enough.

My problem was that I was presenting information I wanted the viewer to know— rather than what they needed to know. I also learned that I needed to use a structure that would ensure they would pay attention and remember my information. What I thought was important (facts and figures) was quickly forgotten by the viewer—especially when presented as a scientist would normally do it; that is, in a boring, pedantic way.

Audience understanding depends on both content and structure (of the message).

The upshot of all this was that I realized something important about communication that I could apply to my writing and speaking skills. When someone considers a piece of information, their comprehension depends not only on the content but how the content is structured. The effect of structure on comprehension is true for a video viewer, a reader of a scientific paper, or an audience member listening to a speech.

Your audience must expend mental energy taking in the content, but they also have to strive to understand your word choice, syntax, and emphasis. The point is that you can make it easy for the viewer or reader to grasp the substance of your information or you can make it difficult by using tortuous language. It doesn’t matter if you are dealing with a lay audience or a group of specialists in your field. If you use cryptic, equivocal, or imprecise language, you risk the audience misinterpreting your message.

Scientists are rarely trained to write and speak clearly and effectively; we are expected to develop these skills on our own. Consequently, I see many student manuscripts that contain important data, but the writing is ambiguous and poorly worded; it wanders all over the place with no clear argument or even a hint as to what the “take-home message” is. Lest you think I’m picking on students, let me add that established scientists can be even worse. Let’s consider a random abstract picked from the literature:

The discrete-dipole approximation (DDA) for scattering calculations, including the relationship between the DDA and other methods, is reviewed. Computational considerations, i.e., the use of complex-conjugate gradient algorithms and fast-Fourier-transform methods, are discussed. We test the accuracy of the DDA by using the DDA to compute scattering and absorption by isolated, homogeneous spheres as well as by targets consisting of two contiguous spheres. It is shown that, for dielectric materials (¦m¦ ≲ 2), the DDA permits calculations of scattering and absorption that are accurate to within a few percent.”

Confused? Did you give up about half-way through? Much of the problem lies in the structure of the abstract, not with the jargon (Gopen and Swan 1990). Here is a translation:

We reviewed the use of a computational method (DDA), tested its accuracy in computing light scattering and absorption by different types of spheres, and found the method to be highly accurate.

Even if you are communicating with a specialist audience in your field, you need to consider their needs and make it as easy as possible for them to understand what you did, what you found, and why it is important.

Although it’s impossible to ensure that everyone will understand everything you say, you can increase the chances that most of your readers will interpret your material as you intended by structuring it in a way that meets their expectations. To be successful in communicating a complex science finding, a writer must understand how important language and sentence structure are and how to apply it. See Gopen and Swan 1990 for an in-depth look at the science of scientific writing.

Improve audience understanding by changing your perspective.

Communicating with a non-specialist audience is a particular challenge because it’s not easy for scientists to imagine what their audience or readers know or need to know. We suffer from the curse of knowledge, which cannot easily be set aside. One remedy is to ask yourself simple questions about a prospective audience. Do they know what DNA is? Have they heard of sea-level rise? Are they science literate but know nothing about your particular topic?

Most scientists never go though this exercise, but it can really teach you how to think clearly about your topic and then to explain it to someone else. Why is your research important to society? What is innovative or new? Are there some interesting applications based on your work? In the process of answering such questions, we discover a new way of looking at our science. By putting ourselves in our audience’s shoes, we shift our perspective and see things differently—from a focus on the minutiae of our study to the big picture.

If we are clear in our own minds about the significance of our research, we can more easily express it in a paper or tell a conference audience how our findings will advance knowledge. Clearly explaining the importance of your research findings in a paper or what you plan to do in a proposal will make it easier for reviewers to check the “accept” or “fund” box.

The next post in this series: Use Storytelling Techniques

How Making Videos Can Help You Write Better Science Papers: Distill Your Message

beachrock_klmckeeIn previous posts, I’ve talked about all the various ways video can be used by science professionals—from creating video abstracts to strengthening your professional identity in science.

One beneficial outcome that I’ve not talked much about is the feedback effect video making can have on other communication skills such as scientific writing and speaking. Not long after I began making videos, I realized that the lessons I was learning about effective communication with video could be used to improve my technical papers and conference presentations.

In this series of posts, I will describe a few of those lessons:

1. Distill Your Message

2. Focus on Your Audience

3. Use Storytelling Techniques

In this post, I will tackle the first lesson: Distill Your Message.

One of the most useful insights I’ve gained from video making is that to be memorable a message must be distilled down to a core idea. In a brief video, you don’t have time to ramble on, listing fact after fact; you must get to the point quickly. I soon learned that videos with a single, clear idea were more understandable and memorable by viewers—and were easier to make. It occurred to me that this principle could be applied to writing papers and proposals or giving conference talks. Many science professionals make the mistake of presenting a laundry list of results; they then add insult to injury by describing those results with convoluted prose or excessive and unnecessary detail. The reader or audience member is at a loss as to what they should remember and, consequently, quickly forget everything you said.

Distill, distill

I learned to always distill my message before leaping into writing a paper or preparing a conference talk or seminar. What was my main finding and its significance? Why should people care about my work? What was new or innovative?

As I began making videos, I found that distilling my findings down to a single sentence and expressing it in clear language helped me later when I sat down to write the technical paper. The process of crafting that sentence made me think harder about my message and what I wanted to get across in the paper.

For example, I might distill a two-year study down to a single sentence this way:

“Species A responded to higher carbon dioxide (CO2) levels when grown alone but not in mixture with Species B, indicating that competition may limit plant growth response to future increases in atmospheric CO2”.

That sentence accurately describes the research finding and interpretation, but is long, contains unnecessary detail, and is not easy to grasp. An improved version might read:

“Competition for sunlight and soil nutrients may limit plant response to future increases in atmospheric levels of CO2.”

This sentence would be suitable for both a professional audience and a lay audience. It expresses the key finding in simple language without “dumbing down” the information. This wording lacks the details about Species A and B, but these are not really needed. The revised sentence is much easier to understand and is more memorable. Part of the reason is that the sentence is shorter and includes a more vivid description about what plants compete for; that is, by conjuring a mental picture of the sun and the soil, I’ve made the information more memorable.

Simplify, simplify

I also began paying more attention to the language I used in writing and speaking. I found that I could express myself more clearly and unambiguously in my writing by using simpler language. By simple, I don’t mean simplistic. Simple means easy to understand or uncomplicated. I’m talking specifically about sentence structure. Some scientific writing is so dense, it takes two or three readings to comprehend what the author is trying to say. The problem is not necessarily due to a difficult-to-explain concept or use of field-specific jargon, but to convoluted, ambiguous language. To illustrate, here is an example (first sentence in an abstract) from Gopen and Swan’s 1990 classic paper, “The Science of Scientific Writing“:

“The smallest of the URF’s (URFA6L), a 207-nucleotide (nt) reading frame overlapping out of phase the NH2-terminal portion of the adenosinetriphosphatase (ATPase) subunit 6m gene has been identified as the animal equivalent of the recently discovered yeast H+ ATPase subunit 8 gene.”

At first glance, you might conclude that the main problem with this 42-word sentence is the terminology. However, you would still have difficulties even if you know that URF stands for Uninterrupted Reading Frame (a segment of DNA organized in such a way that it could encode a protein) and that ATPase is an enzyme involved in energy metabolism. Nor is it the length of the sentence.

Gopen and Swan argue that one culprit obscuring meaning in this sentence is subject-verb separation. The problem is that the subject (“the smallest”) is separated from its verb (“has been identified”) by 23 words. A lot of words between subject and verb reduces comprehension; also, the reader interprets these intervening words as material of lesser importance (and, consequently, may breeze through them). If the intervening words express the crux of your finding, this structure will undermine that insight. Here is one possible revision of that sentence to move the verb closer to its subject:

The smallest of the URF’s (URFA6L) has been identified as the animal equivalent of the recently discovered yeast H+-ATPase subunit 8 gene.

Now we have a much clearer picture: the authors have identified the smallest unit in animal DNA analogous to a previously described gene in yeast that codes for an important enzyme in energy metabolism. Subject-verb separation is just one way a writer can confuse the reader. The sentence I listed earlier also minimizes the number of words between subject and verb:

“Competition for sunlight and soil nutrients may limit plant response to future increases in atmospheric levels of CO2.”

Not only that, the wording places the context (plant competition) at the beginning of the sentence and the new information (CO2) right where a reader expects it—in the stress position at the end of the sentence (Gopen and Swan, 1990). Readers expect to be provided with old information (context) at the beginning of a sentence, which prepares them for the new information to be given at the end. In other words, save the payoff for last.

If we reverse this order, the new information appears before we know the context:

Plant response to future increases in atmospheric levels of CO2 may be limited by competition for sunlight and soil nutrients.

Many writers will see nothing wrong with this construction. True, there is nothing grammatically wrong, and most readers will understand what is meant. The problem is that the construction makes the reader work harder to parse out the context and the new information. Moreover, if you consistently structure your writing this way, the reader’s overall comprehension will be greatly reduced.

A final point is that this reverse construction is passive because the verb is acting on the subject: “Plant response…may be limited…“. In the other sentence, the action of the subject is expressed in the verb: “Competition…may limit..“; that is, active voice. There is nothing wrong with passive sentences, which are common in scientific writing; however, use of the active voice, at least occasionally, will bring your writing to life. For more insight into how structure affects comprehension of scientific writing, see Gopen and Swan 1990.

This distilling and sentence-crafting exercise can eventually lead to a better title for a paper: “Competition for soil nitrogen limits [insert species name] growth response to higher atmospheric CO2”. By distilling my message prior to writing a paper or preparing a talk, I also find that it is easier to organize my material to more effectively support my main finding(s) and to eliminate unnecessary data (or relegate it to a supplemental section). With this approach, I find that people understand me much better.

As I said at the beginning of this post, video-making has opened my eyes to ways I can improve my writing and speaking skills. Learning to distill my message has helped me write better journal articles…and blog posts!

In the next post, I will talk about Part 2: Focus on Your Audience